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for DSP applications:

consider the trade-offs

GARRICK BLALOCK, BERKELEY DESIGN TECHNOLOGY INC

As DSP becomes ubiquitous
in both PCs and embedded
applications, many product
designers must decide how
to best implement signal-
processing functions in their
systems. In many cases,
designers have to choose
between using a dedicated
DSP or using a pP or pC
already present in the design. For a system designer, choos-
ing whether to implement DSP on a general-purpose P
greatly depends on the application. Cost, power consump-
tion, development tools, software, algorithms, performance,
and many other issues affect the choice.

Until recently, this decision was easy—most general-pur-
pose processors simply didn’t have sufficient performance to
implement most important DSP functions. Furthermore,
dedicated DSPs offer several compelling advantages: They
typically have strong price/performance ratios for DSP appli-
cations, consume relatively little power for DSP tasks, feature
architectures that simplify DSP programming, and often
have the support of a suite of DSP-oriented application-
development tools and software libraries.

Although dedicated DSPs are well-suited to handle a sys-
tem’s signal-processing tasks, most designs also require a pP
or pC for other processing tasks. Having two processors con-
tradicts several common design objectives: lowering the sys-
tem part count, reducing power consumption, minimizing
size, and lowering cost. Integrating system functionality into
one processor can be the best way to realize these goals.
Reducing the processor count from two to one also means
you have fewer instruction sets and tool suites to master.

One example of a system in which it can be attractive to
use an already-existing general-purpose processor to imple-
ment DSP is a desktop PC. Implementing DSP applications,
such as audio processing or modems, on an existing pP
enables you to add DSP applications with little or no addi-
tional cost. Another example is consumer embedded appli-
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Using general-purpose processors instead of
dedicated DSPs for DSP-intensive applications

has some advantages, as well as some pitfalls.
General-purpose pPs are a viable option
in some system designs.

cations, such as cellular tele-
phones and wireless person-
al digital assistants, which
often contain both a DSP
and a system uP or pC. In
addition to keeping costs
down, using the n.C or p.P for
DSP functions reduces prod-
uct size and may lower
power consumption.

In some cases, general-purpose puPs can actually outper-
form their DSP counterparts. Recent benchmark results
reveal the effectiveness of general-purpose processors run-
ning DSP functions, such as a 256-point FFT and finite-
impulse-response (FIR) filter (see box “Benchmark studies
demonstrate general-purpose pPs’ DSP capabilities”).

General-purpose puPs lack some DSP capabilities

Despite the promising potential, obtaining strong DSP
performance from general-purpose processors is no easy
task. Many general-purpose nC and pP architectures are
poortly suited for implementing DSP. Consider, for example,
a common DSP algorithm: an FIR filter. The mathematical
representation of an FIR filter is

Nyaps
Y x(n-h),

j=0

y(n) =

where N, . is the number of taps in the filter. Implementing
an N-tap filter using a typical DSP, such as the Motorola
(Austin, TX) DSP56002, simply requires executing the last
instruction in Listing 1 one time per tap. Hardware looping

LiSTING 1—TYPICAL-DSP INSTRUCTIONS

move #Xaddr, r0, ; load data address into r0 pointer

move #Haddr,r4 ; load coeffi address into r4 pointer
rep #Ntaps ; repeat the following instruction Ntap times
mac x0,y0,a x:(xr0)+,x0 y:(r4)+,y0
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handles the instruction repetition.

In contrast, a typical general-purpose processor requires far
more instructions to implement the same filter. To implement
one tap of the filter, most general-purpose processors must
execute a lengthy series of instructions (Listing 2).

Although you can use a few mathematical tricks to slight-
ly simplify this code, general-purpose wPs usually require
many more instruction cycles to implement signal-process-
ing algorithms than do DSPs. The high instruction-cycle
count results from general-purpose wPs’ lack of the many key
architectural features of DSPs, such as a single-cycle multi-
ply-accumulate (MAC) instructions, hardware looping, sat-
uration arithmetic, multiple on-chip memory buses, and
dedicated address generators that support modulo arith-
metic.

Two ways to replace a DSP

Given the limits of a typical general-purpose architecture,
uPs can achieve reasonable DSP performance by either
increasing the instruction-execution rate or incorporating
specialized DSP features and instructions. Although they
have few DSP-oriented features, high-end PC processors,
such as the original Pentium (Intel, Santa Clara, CA) and
PowerPC 604e (Motorola/IBM, Fishkill, NY), can achieve
strong DSP performance using their floating-point data-
paths. Despite the high number of instructions necessary to
implement DSP algorithms, advances in instruction-execu-
tion rates using techniques such as high clock speeds and
superscalar architectures have bolstered these processors’
DSP performance.

The design and advanced fabrication techniques of the
Pentium and 604e allow them to run at instruction-cycle
rates of 200 MHz and higher. In contrast, many dedicated
DSPs have only recently achieved instruction-cycle rates of
around 100 MHz. (The TMS320C62xx from Texas Instru-
ments (Dallas), which runs at 200 MHz, is the lone excep-
tion). Of course, these high clock speeds contribute to the
high power consumption of most high-end, general-purpose
uPs and make them unsuitable for many portable DSP appli-
cations.

Multiple-issue architectures speed execution

The Pentium and the 604e feature two- and four-issue
dynamic superscalar architectures, respectively. A dynamic
superscalar architecture automatically executes nearby
instructions in parallel whenever possible. Although data
dependencies within programs and restrictions on which

LISTING 2—GENERAL-PURPOSE-PROCESSOR

INSTRUCTIONS
loop: mov *10; £3 ; load data into r3 pointer
mov *rl, r4 load coefficient into r4 pointer
mpy r3,r4,r5 iply into r5
add x5, x6 r5 into accumulator ré
inc r0 ent pointer to read delay line
inc i | ent pointer to coefficients
dec ctr ement loop counter
jnz loop back to top if more taps remain
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types of instructions can execute in parallel often prevent
programs from taking maximum advantage of the potential
instruction throughput, parallel execution significantly
increases the average rate of instruction execution. Com-
bined with high clock speeds, multiple-issue architectures
can yield high instruction-execution rates that compensate
for a general-purpose uP’s poor instruction-set efficiency in
DSP applications.

Unfortunately, dynamic superscalar architectures pose a
problem for DSP programmers: Because instruction schedul-
ing is dynamic, code-execution time is difficult to predict
and can vary widely depending on many factors. Poor exe-
cution-time predictability is a serious concern, because
many DSP applications are subject to real-time constraints.
Furthermore, other dynamic characteristics of high-end,
general-purpose processors—such as caches, data-dependent
instruction-execution times, and branch prediction—make
the problem worse. Although all these features can increase
a processor’s instruction-execution rate, they complicate the
prediction of program-execution time.

The difficulty of predicting execution time can also hin-
der the optimization of performance-critical DSP inner
loops. In many DSP applications, a small number of inner
loops consumes a large portion of the execution time. To
achieve maximum performance, DSP programmers typical-
ly optimize these critical inner loops in assembly language.
Without the ability to predict the execution time of the
instruction sequences in these inner loops, optimizing for
efficient DSP code is difficult.

Fortunately, using good tools mitigates the problem of
execution-time predictability. For example, you can use a
cycle-accurate instruction-set simulator to calculate code-
execution time and forecast worst-case scenarios to avoid
violating real-time constraints. Unfortunately, cycle-accu-
rate simulators, which are standard tools for dedicated DSPs,
are sorely missing for most high-end general-purpose proces-
sors. Although not fully cycle-accurate, Intel’s Vtune, a tool
for profiling and optimizing 32-bit Pentium code, is perhaps
the closest tool to a DSP-oriented instruction-set simulator
among Pentium and PowerPC 604e tools. Vtune first collects
a trace of a program’s execution by running the program on
a physical sample of the processor. The tool then uses an
approximate, timing-only model of the processor to predict
the performance of the traced program, to identify places
that incur performance penalties, and to suggest possible
optimizations. To demonstrate how difficult predicting exe-
cution time can be in high-end superscalar architectures,
consider the section of simple PowerPC 604e assembly code
(Listing 3).

Despite the simplicity of the code—it merely adds two
vectors—even engineers familiar with the 604e have diffi-
culty predicting how many instruction cycles it takes to exe-
cute one iteration of the loop in steady-state operation. The
PowerPC architecture has two load/store units, a floating-
point multiplier, and a branch execution unit, all of which
can execute in parallel. Thus, some experienced program-
mers might conclude that this assembly code executes in
one cycle per loop iteration. However, the PowerPC archi-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




B (Desion Featuse

DSP ON GENERAL-PURPOSE uPs

tecture also imposes complicated rules on what instructions
can execute in parallel, which suggests that the code exe-
cutes in five cycles. If engineers cannot easily predict the
number of instruction cycles necessary for such a simple
operation, optimizing code in critical DSP inner loops can

be nearly impossible. (In fact, the code executes in four
instruction cycles per iteration.)

In addition to boosting a processor’s instruction-execu-
tion rate, designers can strengthen DSP performance by
increasing the amount of DSP work the processor accom-

BENCHMARK STUDIES DEMONSTRATE GENERAL-PURPOSE UPs’ DSP CAPABILITIES

Independent benchmark studies by Berkeley Design Technol-
ogy Inc (BDTI) reveal that general-purpose processors possess
strong DSP capabilities. In fact, the execution times of several
general-purpose processors on BDTI’s FFT benchmark are less
than that of many DSPs (Figure A).

For example, in floating-point calculations, both the Pow-
erPC 604e (IBM, Fishkill, NY/Motorola, Austin, TX) and the
Pentium (Intel, Santa Clara, CA) complete the 256-point FFT
in less time than the ADSP-21062 (Analog Devices, Norwood,
MA), also known as “SHARC,” a popular floating-point DSP. In
fixed-point calculations, the Intel Pentium with multimedia
extensions (MMX) outperforms the Motorola DSP563xx, a
common fixed-point DSP. However, the Pentium with MMX
is no match for the TMS320C62xx, the latest fixed-point DSP
from Texas Instruments (Dallas).

A cost/performance ratio of the same processors on BDTI’s

complex finite-impulse-response (FIR) filter benchmark reveals
the advantages of dedicated DSPs when you also consider cost
(Figure B). Because the fastest versions of many pPs, especial-
ly PC processors, command a price premium, the study uses
the most cost-effective speeds for all of the processors. In float-
ing-point calculations, a representative DSP, the ADSP-21062,
scores far better than either of the general-purpose processors.

Similarly, in fixed-point calculations, dedicated DSPs, such
as the DSP563xx and the TMS320C62xx, score much better
than the general-purpose processors. Of course, if the system
specifications require a general-purpose processor for other
reasons, the DSP functionality that it implements comes at lit-
tle or no additional cost.

More information on DSP benchmark results and brief
analyses of many processors’ DSP capabilities are available on
BDTI’s Web site, www.bdti.com.
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A study of processor execution time on BDTI's FFT bench-
mark reveals some surprises: Some general-purpose uPs out-
perform dedicated DSPs.

Cost/performance results of a complex-block FIR-filter
benchmark show the advantages of DSPs when you also con-
sider cost.
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plishes per instruction. Several vendors of high-end, gener-
al-purpose processors have added single-instruction, multi-
ple-data (SIMD) instruction-set extensions to their proces-
sors. SIMD instructions partition registers and ALUs so that
multiple items of data are present in one register or memo-
ry location and so that one instruction can process the data
in parallel. For example, an SIMD processor might contain
64-bit registers that you can partition into eight 8-bit data
elements, four 16-bit data elements, two 32-bit data ele-
ments, or one 64-bit data element. Typically, an SIMD
processor performs an operation, such as addition or multi-
plication, on multiple pairs of data elements using just one
instruction. Processor vendors commonly use SIMD instruc-
tions to add DSP capabilities to 32- or 64-bit RISC/CISC
architectures, because these architectures often already con-
tain the necessary wide buses and registers.

One of the attractions of SIMD instructions is the ability
to select an appropriate data-word length. If low precision is
acceptable, programmers can use 16-bit data elements and
operate on four elements in parallel, for example. Alterna-
tively, if higher precision is necessary, programmers can
choose 32-bit data elements at the price of performing fewer
operations in parallel.

If SIMD instructions use fixed-point arithmetic, processor
designers can sometimes accomplish parallel processing by
simply partitioning an existing datapath. For example, if a
processor contains a 32X32- to 64-bit multiplier, designers
can dissect the multiplier into four 8 X8- to 16-bit multipli-
ers that operate in parallel. Unfortunately, realizing the per-
formance potential of SIMD instructions often requires
restructuring algorithms to process elements simultaneous-
ly. This requirement can make optimizing code for SIMD
instructions difficult. Furthermore, some applications may
see little improvement over non-SIMD instructions. For
example, applications with sequential data dependencies,
such as adaptive filtering, may be limited in the number of
calculations that can run in parallel.

In many DSP applications, however, SIMD instructions
are effective. For example, Intel uses SIMD instructions in its
multimedia extensions (MMX), which greatly improve the
DSP performance of its Pentium processor. However, these
extensions have complications. To implement the exten-
sions and maintain operating-system compatibility, Intel
designed the MMX instructions to share registers with the
processor’s floating-point unit. Thus, programs incur a
penalty of many cycles when switching from floating-point
to MMX modes. Fortunately, the cost of this switch is unlike-
ly to significantly affect many DSP applications, because the
MMX datapath is fixed-point, and few DSP applications
require frequent mixing of fixed-point and floating-point
arithmetic. Thus, the slow switch from floating-point mode
to MM X mode should occur infrequently in most DSP appli-
cations.

Processors for cost-sensitive embedded applications typi-
cally run at much lower clock speeds than do processors in
high-end desktop PCs. Thus, it’s not surprising that embed-
ded-processor vendors add coprocessors and other hardware
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LisTING 3—POWERPC 604E ASSEMBLY CODE

@vec_add_loop:

lfsu fpTempl, 4 (rAAddr)

1fsu fpTemp2, 4 (rBAddr

fadds fpSum, fpTempl, fpTemp2
stfsu fpSum, 4 (rCAddr)

bdnz @vec_add_loop

Load A data, ptr. update
Load B data, ptr. update
Perform add operation
Store sum, ptr. update
loop

o3k

enhancements to boost DSP performance. Although many
processor vendors attempt to boost DSP performance by sim-
ply adding MAC units to their existing architectures—the
R4650 from Integrated Device Technology (Santa Clara, CA)
is a good example—other vendors make more extensive
modifications.

For example, the ARM7TDMI processor core (Advanced
RISC Machines, Cambridge, England) is a simple, general-
purpose processor core that targets embedded consumer
applications in which low cost and low power consumption
are paramount. Unmodified, the DSP performance of the
ARM7TDMI suffers from poor memory bandwidth and a
slow MAC instruction. To improve performance in DSP
applications, the company now offers the Piccolo coproces-
sor. Piccolo accepts operands and instructions from the main
processor and then executes them in parallel with normal
ARM instructions executing on the main processor. The DSP-
oriented Piccolo instruction set allows single-instruction-
cycle throughput of important DSP instructions, such as
MAC. Because Piccolo executes independently, the main
ARM processor is free to execute other instructions or load
more data from external memory, which reduces the mem-
ory-bandwidth bottleneck.

Hitachi (Brisbane, CA) has adopted a contrasting strategy
in its SH-DSP. The SH-DSP adds a complete fixed-point DSP
datapath and instruction set to the company’s successful SH-
2 nC architecture. This unusual hybrid approach allows pro-
grammers to add DSP functionality and protects their invest-
ment in SH-2 code, which runs unaltered on the SH-DSP.
Programmers can access the SH-DSP’s DSP datapath by
adding DSP instructions to an SH-2 program. The SH-DSP
sequentially fetches instructions and issues DSP and pC
instructions to the appropriate execution unit.

The DSP capabilities of the SH-DSP are similar to those of
many 16-bit DSPs and enable strong fixed-point DSP per-
formance at clock speeds much lower than those of the Pen-
tium and the 604e. The SH-DSP’s compatibility with the SH-
2 provides a natural migration path for SH-2 customers who
contemplate DSP-intensive designs. Of course, this compat-
ibility has a price. Although the SH-DSP is a single processor,
it has two personalities: two instruction sets, two datapaths,
two sets of registers, and so on. This duality complicates the
programming model and hinders performance in some
instances.

Although high-end processors, such as the Pentium, Pen-
tium with MMX, and PowerPC 604e, offer excellent DSP per-
formance, their high cost and power needs make them pro-
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hibitive for small, battery-powered, or low-cost consumer
applications. For desktop-PC applications, however, power
consumption is of little consequence, and the cost of the
host processor is unavoidable. Any DSP functionality that
the host processor can provide comes with little marginal
cost.

Why, then, are desktop-PC host processors rarely used for
DSP? Problems with tools, operating systems, and hardware
definition are all part of the answer. As stated earlier, few
tools are available to develop and fully optimize DSP appli-
cations on general-purpose uPs. In addition, most program-
mers of high-end, general-purpose wPs use a high-level lan-
guage, such as C or C++. Predicting the execution time of
compiled code is even more difficult than predicting that of
assembly-language code, and performance is often many
times worse than the prediction. Moreover, compiler-gener-
ated code is typically difficult to optimize. In the case of the
Intel Pentium with MMX, a C compiler that generates MMX
instructions is not even publicly available.

Furthermore, even with good application software, the
operating systems of most popular PCs don’t have the real-
time support necessary to guarantee that DSP applications
get the sufficient system resources to meet real-time con-
straints. For example, many general-purpose pPs and the
operating systems on which they run offer no practical way
to lock a cache. Without cache locking, execution times vary
from PC to PC depending on the size of the cache and the
speed of external-memory accesses. Although some applica-
tions can compensate for variable execution times—a video-
conferencing system, for example, could drop a frame—
many real-time applications, such as modems, cannot
endure a shortage of processor time.

Embedded applications have more options

Consumer embedded applications usually place priority
on cost. Replacing both a DSP and a general-purpose pP with
one general-purpose w.P saves money and simplifies manu-
facturing. In mobile applications, reducing the processor
count reduces product size and possibly power consump-
tion.

The challenges of coding DSP algorithms on embedded
general-purpose pPs are less daunting than those of PCs.
Because most low-cost, general-purpose processors don't
employ dynamic superscalar execution and branch predic-
tion, predicting execution time and optimizing DSP code are
easier. And because embedded processors tend to implement
fixed functions, code can often execute from on-chip ROM.
This feature reduces the processor’s dependency on instruc-
tion and data caches, which further increases execution pre-
dictability.

In addition, unlike desktop-PC designers, embedded-sys-
tem designers are not locked into a choice of only one or two
operating systems; they are free to choose among real-time
operating systems. Embedded-processor vendors have also
been more aggressive in providing DSP-oriented tools.
Hitachi and Advanced RISC Machines, for example, offer
cycle-accurate simulators for the SH-DSP and the Piccolo
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coprocessot, respectively. Of course, overcoming the
momentum of dedicated DSPs won't be easy. Large selec-
tions of DSP-oriented software, development tools, and
third-party support are available for DSPs from vendors such
as Texas Instruments and Analog Devices (Norwood, MA).

To continue to leverage the advantages of DSPs but still
achieve more system integration, some designers may try to
implement general control and computing on a DSP.
Motorola’s DSP568xx family targets this market by adding
many p.C features to a 16-bit DSP core. Other designers may
try to get the best of both worlds by choosing a chip with
both nC and DSP cores. Texas Instruments has supported
this approach by introducing a chip for cellular handsets
that combines a TMS320C54x DSP core with an ARM7TDMI
nC core. The ARM core handies supervisory control func-
tions and the user interface, and the C54x implements voice
compression and baseband signal processing.

What happens next?

The incentive to integrate functionality will undoubtedly
drive further attempts to add DSP capabilities to general-pur-
pose wPs. In the PC arena, advances in tools, operating sys-
tems, and standards will eventually make host-based signal
processing a reality. Architecture extensions, such as Intel’s
MMX, will accelerate this process. In embedded markets, the
choices will proliferate to meet the varied requirements of
applications. Undoubtedly, general-purpose processors will
increasingly become viable and attractive choices for DSP-
algorithm implementation.

However, it’s unlikely that general-purpose processors will
replace dedicated DSPs in all applications. For DSP-intensive
applications that require a demanding mix of performance,
price, power consumption, software, and development
tools, DSPs will remain the first choice of designers.  Eel
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