
igital signal processing (DSP) is the application of
mathematical operations to digitally represented
signals. Because digital signals can be processed
by cost-effective digital integrated circuits, DSP
systems can economically accomplish complex
tasks, such as speech synthesis and recognition,
that would be difficult or impossible with conven-
tional analog techniques.

The market for products based on DSP tech-
nology--wireless communication devices and PC
multimedia peripherals, for example-is growing
rapidly. Semiconductor makers have responded to

Phil Lapsley and
Garrick Blalock
Berkeley Design
Technology Inc.

this demand with a bewildering array of DSP pro,
cessors. Selecting the best one for a given applica-
tion presents a difficult and time-consuming chal-
lenge for DSP system designers.

Simple, familiar performance measures like
MIPS (millions of instructions per second) and
MOPS (millions of operations per second) are mis-
leading and neglect factors like memory usage,
power consumption, and application execution
time. Complex altematives-such as application
benchmarks-suffer from limitations that virtually
preclude fair comparisons.

Fortunately, a compromise methodology that
combines algorithm kemel benchmarking with
application profiling velds good estimates of proces-
sor performance weighted to the target application.

Advantages of DSP
The key advantage of DSP systems over those

based on analog circuits is that the former benefit
from the rapid advances being made in digital IC
manufacturing processes; increasing density and
speed have brought enormous performance gains
as well as cost and size reductions. As a result,
DSP ICs can combine digital control functions,
such as user interfaces, with signal-processing cir-
cuitry. Also, they can interface with a wide selec-
tion of peripherals and other system components.
Flexibility is another plus: unlike analog systems,
which usually require hardware modificatons to
effect changes in functionality, many systems
based on DSP processors may be quickly repro-
grammed in response to changing requirements.

DSP systems enjoy two further outstanding
advantages over analog systems. They are far less

sensitive to environmental conditions such as
temperature, and they are insensitive to compo-
nent tolerances. Barring catastrophic failure,
they will behave the same in the snow as in the
desert, environments that might upset analog
systems. And properly functioning DSP systems
will always produce the same output from the
same (digital) inputs. In contrast, analog compo-
nents are guaranteed to be accurate within a
stated tolerance only, so two identically manu,
factured analog systems will respond slightly dif-
ferently to the same inputs. These two advan,
tages make DSP systems predictable, repeatable,
and well suited for high,volume manufacturing.

DSP was once limited to high-end, cost-insensi-
tive applications such as military sonar and medical
imaging systems. But now, the cost-performance
ratio of DSP processors makes digital signal pro-
cessing the best solution for a world of consumer
products and other cost-sensitive applications. DSP
solutions today are ubiquitous in applications such
as digid cellular phones, modems, disk drive servo
control, PC multimedia, and home theater.

DSP processors
Because most signal-processing systems per-

form complicated mathematical operations on
real-time signals, DSP processors are specially
architected to accelerate the execution of repeti-
tive, numerically intensive calculations. Common
elements include:

Circuitry to perform multiplyaccumulate opera-
tions, useful in algorithms such as filtering.

Multiple-access memory, which enables the pro-
cessor to load multiple operands, such as a data
sample and a filter coefficient, simultaneously and
in parallel with an instruction.

Various special memory-addressing modes and
program-flow control features designed to speed
the execution of repetitive operations.

Special on-chip peripherals or I/O interfaces that
enable the processor to interface efficiently with
other system components, such as analogto,digr,
tal converters and memory.

The focus here is on evaluating the perfor-
mance of programmable DSP processors, such as
Texas Instruments’ TMS320C50 and Motorola’s
DSP56002. The evaluation methodology to be
described may also be applied to determine the
DSP performance of generalspurpose processors.

Several manufacturers have enhanced the
signal-processing abilities of their general-pur-
pose processors by adding instructions and
hardware accelerators. For example, Intel Corp.
has developed the MMX extensions for the
Pentium processor and Integrated Device
Technology has added basic DSP functionality
to its R4000 line of RISC processors. In the
embedded systems arena, many microcontroller
and embedded processor manufacturers are also
adding DSP functionality.

74 0 0 l 8 ~ 9 2 3 5 / 9 6 / $ 5 0 0 0 1 9 9 6 IEEE 1EEE SPECTRUM JULY 1996

What is DSP processor performance?
Engineers frequently cite performance as

their overriding concern when choosing a pro,
cessor for a new DSP system design. After all,
their choice must meet the number-crunching
demands of real-time applications like digital
cellular and PC multimedia. Yet tight con-
straints on the pricing of consumer products
rule out paying for any unneeded performance.

These conflicting requirements often lead
designers to search for the lowest-cost DSP pro-
cessor that performs well enough for the applica-
tion. That means quantifying the computational
needs of an application and identifylng DSP pro+
cessors that satisfy them-a truly challenging
task. Berkeley Design Technolom, which special-
izes in the analysis of DSP technology, has devel-
oped a two-fold methodology of algorithm kernel
benchmarking and application profiling.

DSP processor performance can be measured
in many ways. The most common metric is the
time required to do a certain amount of process-
ing. In some applications, however, concerns
such as memory usage or power consumption
may be equally-r even more-important. An
ideal technique for measuring performance
would yield data on execution time, memory
usage, and power consumption. In what follows,
execution time will serve as the primary measure
of performance, with memory usage and power
consumption as secondary considerations.

Customary methods
Traditional approaches to performance mea-

surement use very simple metrics to describe pro-
cessor performance. The most common perfor-
mance unit, MIPS, is misleading because the
amount of work done by an instruction can vary
greatly from one processor to another. DSP proces-
sors, in particular, often have highly specialized
instruction sets.

In other words, MIPS figures are useful only in
the context of a single, known, processor architec-
ture. Outside that context, there would have to be
some gauge of instruction set efficiency-perhaps a
ratio of the number of instructions the processor
executes to the number of instructions other pro-
cessors in the same class require to do the same
work. MOPS suffers from a related problem-what
counts as an operation and how many are needed
to do useful work vary greatly from processor to
processor.

Other oft-quoted performance-measurement
units can also mislead. Because multiply-accumu-
late operations are central to many DSP algo-
rithms, such as filtering, correlation, and vector
multiplication, some manufacturers quote perfor-
mance in multiply-accumulates per second
(MACS). Most DSP processors, however, can
complete one MAC per instruction cycle, making
this unit equivalent to MIPS. Further, MAC mea-

Functions used for Berkeley Design Technology benchmarks

Function Description Application examples

Real block finite impulse FIR filter that operates on a G.728 seeech encoding,
response (FIR) filter

Complex block FIR filter

Real single-sample
FIR filter

Least-mean-square Least-mean-square adaptive FIR
adaptive FIR filter

block of real (not complex) data

FIR filter that operates on a
block of complex data

FIR filter that operates on a
single sample of real data

filter that operates on a single
sample of real data

-
other speech processing

Modem channel equalization

Speech processing, general
filtering

Channel equalization, servo
control, linear predictive encoding

mpulse response IIR filter that operates on
single sample of real data (IIR) filter

Vector dot product

Vector add

Vector maximum

Convolutional encoder

Sum of the pointwise
multiplication of two vectors

Pointwise addition of two
vectors producing a third vector

Discovery of the va ue
and location of a vector’s
maximum value

Application of convolutional

Convolution, correlation, matrix
multiplication, multidimensional
signal processing

Graphics, combining audio
signals or images, vector search

Error-control coding, algorithms
using block floating-point
arithmetic

North American digital
forward error-correction code
to a block of bits

A contrived series of control
operations (test, branch, push,

p) and bit manipulations

conversion of a normal
time doman signal into the

cellular telephone equipment

ontrol operations appear in Finite-state machine
nearly all digital signal-processing

in-place fast Fourier
transform (FFT) frequency domain

compression, spectral analysis

MPEG = Motion Pictures Experts Group

surements disregard the important data move-
ment and processing required before and after
multiply- accumulate operations.

Neither MIPS, MOPS, nor MACS can mea-
sure secondary performance issues like memory
usage and power consumption. This is a severe
limitation because execution time means little if
memory requirements exceed system design con-
straints. Further, if large memory usage requires
resorting to slower external memory, then the
processor’s speed may be reduced.

Likewise, in a portable application, a processor is
unusable if it consumes more power than the avail-
able battery can supply. Power consumption varies
with different instructions and data values.
Although many manufacturers quote a “typical”
power consumption at a gwen clock rate, such
specifications are suspect without details on the pre,
cise instructions and data used in the measurement.
Furthermore, the measurements do not account for
special power-saving modes available when a pro-
cessor (or a portion of it) is idle.

A common approach to benchmarking com-
puter systems is to use complete applications, or
even suites of applications. This approach is used
by the Standard Performance Evaluation Corp. in

LAPSI-FY b. ULALOCK ~ H O W T O ESTIMATE USI’ I’KOCESSOR PERFORMANCE 7 5

the popular SPEC95 benchmarks for general-purpose processors
and systems. Examples of DSP applications might include speech
coders (CELI: VSELC GSM, and so on), modems (V34, V32bis,
and so on), disk drive servo control programs, or PC-based multi-
media systems. The approach works best in cases where the appli-
cation software is portable-that is, when the application is coded
in a high-level language like C. Unfortunately, because of the inef-
ficiency of C compilers for the most cost-effective (fixed-point)
DSP processors, and because of the demand for performance,
high-volume DSP applications are largely coded in assembly Ian-
guage. Furthermore, when applications written in C are bench-
marked, the compiler as well as the processor is benchmarked.

Suppose application benchmarks are coded in assembly. Even
then, four problems remain. First, few applications are well
enough defined to permit fair comparisons. For instance, two
implementations of a standard modem may use different equaliz-
ers, one more complex than the other, depending on whether the
goal is a high-quality solution or one that makes the least
demands on the processor. Second, with most complex applica-
tions, it’s virtually impossible to ensure that assembly language
software is optimal, or even near optimal; thus, application
implementations may be benchmarking the programmer, not the
processor. Third, full application benchmarks tend to measure a
system’s performance, not just the processor’s. Without very
careful system specifications, isolating the performance of the
DSP processor from other system components like extemal
memory and microcontroller coprocessors is very difficult. Last,
coding an entire application could take years of engineering time.

Algorithm kernel benchmarking
The twofold methodology of algorithm kernel benchmarking

and application profiling is a practical compromise between over-
simplified MIPS-type metrics and overly complicated application-
based benchmarks. Algorithm kernels are the mathematical
building blocks of most signal-processing systems and include
functions such as fast Fourier transforms, vector additions, and fil-
ters. Algorithm kernels offer several compelling advantages as
benchmarks:
0 Relevance. Algorithm kernels can be selected by examining
DSP applications and focusing on those portions that account for
the largest share of the processing time.

Ease of specification. By virtue of their modest size, algorithm
kernels can be well-defined: a specification can state their input
and output requirements, include test vectors to verify function-
al conformance, and indicate which algorithms and optimiza-
tions are allowable. For example, there are many techniques for
implementing a fast Fourier transform (FFT) . Without specifying
the exact type of implementation, one cannot fairly compare two
processors’ FFT execution times.

Optimization. Again because algorithm kernels are of a mod-
erate size, a skilled programmer can write the code in assembly
language and be fairly certain that his or her implementation is
optimal, or very close to optimal, on a given processor.
* Ease of implementation. Because of their moderate size, algo-
rithm kernels can be implemented in a reasonable amount of
time, even with thorough optimization.

The general-purpose suite of algorithm kernels used in
Berkeley Design Technology’s DSP processor benchmarking is
called the BDT Benchmarks [Table 11. Although all of these
benchmarks were chosen for their relevance to DSP applications,
not all of them are traditional DSP functions. For example, the
finite-state machine benchmark represents decision-making in
control processing, and the convolutional encoder represents
error-correction coding. As DSP applications become more com-
plex and highly integrated, DSP processors are increasingly being
called upon to execute these types of operations.

With one exception, the benchmarks are optimized for execu-

tion time. The exception is the finite-state machine, which is
optimized for memory usage-usually of greater concern in con-
trol functions. Naturally, these particular algorithm kernels may
not be the best choice for every application. Engineers may want
to add or delete algorithm kernels to better represent the type of
processing performed in their applications.

Measuring algorithm kernel execution
There are several ways to measure a processor’s execution

time on an algorithm kernel benchmark. Usually the most con-
venient method is with a cycle-accurate software simulator. Such
a simulator models a processor’s execution of instructions and
keeps an accurate cycle count by making adjustments when fac-
tors such as pipeline interlocking or bus contention slow its oper-
ation. Software simulators offer a controlled, flexible, and inter-
active environment for testing and optimizing code. Some
include support for macros or scripts that can automate perfor-
mance measurement and functionality verification so that engi-
neers can quickly see how code changes affect performance.

Hardware-based application development tools can also be used
to measure execution time and are needed to gauge power con-
sumption. An example is an emulator, which lets the user download
code from a PC to the target processor. Using a debugger, most
emulators allow the processor to step through the code line by line,
or to run the code until a breakpoint is reached.

To measure power consumption, code can be run in continu-
ous loops on hardware application development tools. Power
consumption is measured by isolating the power going to the
DSP processor from the power going to other system compo-
nents, running a benchmark in a repeating loop, and using a cur-
rent probe to record the time-varying input current under care,
fully controlled conditions.

Measuring benchmark performance on new processors with-
out software or hardware development tools is a tedious and
error-prone process. The time required to execute each instruc-
tion in the benchmark must be manually calculated and the
benchmarks must be checked manually for functional correct-
ness. Before this can be done, the processor documentation must
be thoroughly understood, because pipeline interlocks or bus
conflicts can slow execution.

Benchmark results
Figure 1 shows the execution time scores of several processors

measured with the BDT FFT benchmark. The FFT is a compu-
tationally efficient algorithm for computing the discrete Fourier
transform, which converts time-domain signals into their fre-
quency-domain representations. The results illustrate how archi-
tectural features can impact a processor’s performance.

The Texas Instruments TMS32OC80, for example, owes much of
its top performance to an arithmetic and logic unit that permits two
16-bit operations per instruction cycle. (Note that the TMS320C80
includes four separate on-chip DSP processors that operate in par-
allel; here, just one of the four processors is considered.) Similar11
the Analog Devices ADSP-2106x and the Zoran ZR3800x both
include special instructions to support the Fm improving their
scores on t h benchmark.

Of course, caution is the watchword when interpreting bench-
mark findings. For example, a processor’s data word width affects
both numerical accuracy and memory usage, and cannot be ignored
when viewing benchmark results. A 24-bit processor may execute a
finite-impulse-response filter in the same time as a 16-bit processor,
but the benchmark results will show a 50 percent increase in data
memory usage. This increased memory use is a result of the extend-
ed precision of the 24-bit data. In fact, since the 24-bit processor is
calculating the filter result with 50 percent greater precision, more
work has clearly been done. If the application needs high precision,
the 24-bit processor may be an excellent choice. O n the other hand,

7 6 IEEE SPECTRUM JULY 1996

if 16-bit precision is sufficient,
then the 24-bit processor may be
a poor candidate because it con-
sumes more data memory.

Application profiling
The results of algorithm ker-

nel benchmarks are useful but
incomplete without an under-
standing of how the kemels are
used in actual applications. A
useful methodology for relating
algorithm kernels to actual
applications is to measure or
estimate how often subsections
of application code are execut-
ed-a technique called applica-
tion profiling. Profiling can be
done at varying levels of granu-
larity, ranging from broad func-
tional subsections to algorithm
kernels and even individual
instructions. At the algorithm
kernel level, profiling looks at
how often such kernels are exe-
cuted when an application is run
for a suitable period of time.

There is more than one way
to profile at the algorithm kernel
level. Code in high-level lan-
guages, such as C, is an excellent
source of profiling information
because algorithm kernels often
can be identified as subroutines.
If assembly code is available,
profiling information may be
extracted by running the code
on an instruction-set simulator
equipped with profiling capabili-
ties, or by setting breakpoints in
key sections of code to see how
often each is executed. The
same information may also be
estimated by studying applica-
tion specifications or block,level
signal flow diagrams.

Application profiling allows
designers to estimate the rela-
tive importance of each algo-
rithm kemel benchmark in a
particular application. Of
course, it is not a perfect pro-
cess. If the number of bench-
marks is limited to a reasonable number, say 10 or 15, then in many
cases there won’t be an exact match between every algorithm
found in a complex application and a benchmark. Engineers will
have to approximate some of the application’s processing with
benchmarks that perform similar, but not identical, computations.

Note, too, that application profiling may not identify some of
the optimizations that will be possible when assembly code is writ-
ten. For example, a programmer may notice that a set of values
computed in one algorithm kemel is also used in a later kernel.
Reuse of the values may markedly reduce the amount of process-
ing required in the second algorithm kernel.

A processor’s performance on an application is estimated by
combining the results of the benchmarks with the results of the
application profiling. Multiplying the benchmark execution times

[1] Better pae$omnce on the
Berkeley Design Technology fast
Fourier transform benchmark is indi-
cated by lower values of processor
execution times. These results are
based on the fastest version of each
processor available in June 1995. For
processors with on-chip cache, the ‘‘-
C” indicates performance with the
cache pre-loaded.

[2] Processor execution time esti-
mates for the 10-bund graphic
equalizer application. A, B, C, and
D represent four commercially avail-
able DSPs.

by the number of occurrences of each benchmark (or a similar
algorithm kernel) yields an estimate of the time it would take to
execute the application.

A simple example of a 10-band graphic equalizer can be used to
illustrate the approach described here. A stream of digitized audio
samples enters the graphic equalizer at a known sampling rate.
Occasionally, a control word telling the equalizer how much to
attenuate each of the 10 frequency bands will also enter the sys-
tem. Every time the equalizer receives a control word, it checks to
see if any of the bandpass attenuation coefficients need to be
changed. If they do, the equalizer updates the filter output gain
parameters before proceeding with the filtering.

The finite-state machine (FSM) benchmark can be used to rep-
resent the decision-making control processing in this application; the

LAPSLEY & U L A L O C K ~ HOW TO E S T I M A T E DSP PROCESSOR PEKFORMANCE 77

infinite impulse response (IIR)
filter benchmark is a good
match for the filter processing.
Thus, an estimate of each pro-
cessor's execution time on this
application can be obtained by
multiplying each processor's
execution times on the FSM
and IIR benchmarks by weight-
ing factors reflecting the
amount of each type of process-
ing required, and then sum-
ming these products for each
processor.

The results of such a calcu-
lation are shown in Fig. 2 for
four commercially available
DSPs. Each processor's total
execution time can then be
compared with the execution
time available (based on the
sampling rate) to determine
whether the processor has
enough performance for the
application.

Other considerations
Although performance is a

leading consideration, many
other factors affect the choice
of a DSP processor. The im-
portance of effective appli,
cation development tools,
for instance, should not be
overlooked. Without such tools, writing application software
can be difficult, no matter how strong the processor's perfor-
mance. Likewise, chip vendor and third-party application engi-
neering support can be invaluable when problems arise. Ad-
ditionally, designers cannot ignore the matter of physical size and
must be sure to choose a processor that is available in an appro-
priate package.

Cost is another critical concem. There are two ways to view the
ratio of cost to performance. In some instances, additional perfor-
mance beyond the minimum required will remain unused. In such
cases, designers typically seek the least expensive processor with
enough performance to do the job. At other times, the excess per,
formance may allow extra features to be added to the product. Or,
the designer may want a line of code-compatible DSP processors
with performance levels appropriate for dlfferent members of an
entire product line. In this situation, a cost-execution-time product
metric-the execution time of a processor multiplied by the unit
cost-may be useful. The cost-execution-time product of several
processors on BDT's FFT benchmark is shown in Fig. 3.

Designers must also remember that minimizing system cost may
not always mean minimizing DSP processor cost. For example, one
processor may use memory more efficiently than a slightly less
expensive rival. If the lower memory usage can eliminate one
memory chip from the system, the more expensive processor may
yield the lowest overall system cost. Designers must also remember
the cost of engmeering time and weigh the effect of the quality of
application development tools on product development schedules.

DSP systems will grow in sophistication and in their demand
for computational performance. At the same time, semiconduc-
tor vendors will press ahead with developing more powerful DSP
processors and integrating them with other system components,
like microcontrollers and general-purpose microprocessors. With
more complicated systems and a widening choice of processors,

[3] Better cost-perJonname on che fast Founer transform benchmark is indicated by lower values ofprocessor cost-
time products Results here are based m the fastest werswn of each processor awailable in June 1995 and on qwmti-
ty 1000 pnces For processors with on-chip cache, the "-C" indicates perjormunce with the cache pre-loaded

designers will undoubtedly need better estimates of a processor':
DSP performance. The methodology outlined above will be ar
excellent starting place for calculating these estimates.

To probe further
"How RlSQ is DSP?" by Michael Smith (/E€€ Micro, Vol. 12, no. 6

December 1992, p. 10) uses benchmark algorithms to compare
reduce6instruction-set computer processors with DSP processors anc
proposes an optimized architecture for digital signal processing.

"Bringing Benchmarks up to SPEC" (BYTE, Vol. 21, no. 3, March
1996, p. 145) discusses how the SPEC95 benchmarks are used tc
evaluate general-purpose microprocessors and systems.

"EDN's 1996 DSP-Chip Directory" by Marcus Levy and Anne Coyk
(EDN, Vol. 41, no. 5, March 1, 1996, p. 40) is a concise overviev
of commercial DSP processors.

Buyer's Guide to DSP Processors, by Phil Lapsley, Jeff Bier, Ami
Shoham, and Edward A. Lee is a 924-page technical report publishec
annually by Berkeley Design Technology, Fremont, Calif. The repor
discusses DSP benchmarking methodologies in detail and contain:
extensive benchmarking data for popular DSP processors. Excerpt:
from this report, as well as a pocket guide to DSP processors, arc
available on the World Wide Web at http://www.bdti.com.

DSP Processor Fundamentals: Architectures and Features (IEEI
Press, 1996) is an introductory textbook in which Phil Lapsley, Jef
Bier, Amit Shoham, and Edward A. Lee discuss DSP process0
architectures and features, and their relationship to performance

Phil Lapsley is vice president of Berkeley Design Technology Inc.
Fremont, Calif, and is one of the company's founders He has cc
authored several industry reports on DSP technology.

Garrick Blalock, a marketing engineer at the company, writes benchmarl
code and contributes to BDT's published reports on DSP technoloa

7 8 IEEE SPECTRUM JULY 1996

http://www.bdti.com

