
igital signal processing (DSP) is the application of 
mathematical operations to digitally represented 
signals. Because digital signals can be processed 
by cost-effective digital integrated circuits, DSP 
systems can economically accomplish complex 
tasks, such as speech synthesis and recognition, 
that would be difficult or impossible with conven- 
tional analog techniques. 

The market for products based on DSP tech- 
nology--wireless communication devices and PC 
multimedia peripherals, for example-is growing 
rapidly. Semiconductor makers have responded to 
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this demand with a bewildering array of DSP pro, 
cessors. Selecting the best one for a given applica- 
tion presents a difficult and time-consuming chal- 
lenge for DSP system designers. 

Simple, familiar performance measures like 
MIPS (millions of instructions per second) and 
MOPS (millions of operations per second) are mis- 
leading and neglect factors like memory usage, 
power consumption, and application execution 
time. Complex altematives-such as application 
benchmarks-suffer from limitations that virtually 
preclude fair comparisons. 

Fortunately, a compromise methodology that 
combines algorithm kemel benchmarking with 
application profiling velds good estimates of proces- 
sor performance weighted to the target application. 

Advantages of DSP 
The key advantage of DSP systems over those 

based on analog circuits is that the former benefit 
from the rapid advances being made in digital IC 
manufacturing processes; increasing density and 
speed have brought enormous performance gains 
as well as cost and size reductions. As a result, 
DSP ICs can combine digital control functions, 
such as user interfaces, with signal-processing cir- 
cuitry. Also, they can interface with a wide selec- 
tion of peripherals and other system components. 
Flexibility is another plus: unlike analog systems, 
which usually require hardware modificatons to 
effect changes in functionality, many systems 
based on DSP processors may be quickly repro- 
grammed in response to changing requirements. 

DSP systems enjoy two further outstanding 
advantages over analog systems. They are far less 

sensitive to environmental conditions such as 
temperature, and they are insensitive to compo- 
nent tolerances. Barring catastrophic failure, 
they will behave the same in the snow as in the 
desert, environments that might upset analog 
systems. And properly functioning DSP systems 
will always produce the same output from the 
same (digital) inputs. In contrast, analog compo- 
nents are guaranteed to be accurate within a 
stated tolerance only, so two identically manu, 
factured analog systems will respond slightly dif- 
ferently to the same inputs. These two advan, 
tages make DSP systems predictable, repeatable, 
and well suited for high,volume manufacturing. 

DSP was once limited to high-end, cost-insensi- 
tive applications such as military sonar and medical 
imaging systems. But now, the cost-performance 
ratio of DSP processors makes digital signal pro- 
cessing the best solution for a world of consumer 
products and other cost-sensitive applications. DSP 
solutions today are ubiquitous in applications such 
as digid cellular phones, modems, disk drive servo 
control, PC multimedia, and home theater. 

DSP processors 
Because most signal-processing systems per- 

form complicated mathematical operations on 
real-time signals, DSP processors are specially 
architected to accelerate the execution of repeti- 
tive, numerically intensive calculations. Common 
elements include: 

Circuitry to perform multiplyaccumulate opera- 
tions, useful in algorithms such as filtering. 

Multiple-access memory, which enables the pro- 
cessor to load multiple operands, such as a data 
sample and a filter coefficient, simultaneously and 
in parallel with an instruction. 

Various special memory-addressing modes and 
program-flow control features designed to speed 
the execution of repetitive operations. 

Special on-chip peripherals or I/O interfaces that 
enable the processor to interface efficiently with 
other system components, such as analogto,digr, 
tal converters and memory. 

The focus here is on evaluating the perfor- 
mance of programmable DSP processors, such as 
Texas Instruments’ TMS320C50 and Motorola’s 
DSP56002. The evaluation methodology to be 
described may also be applied to determine the 
DSP performance of generalspurpose processors. 

Several manufacturers have enhanced the 
signal-processing abilities of their general-pur- 
pose processors by adding instructions and 
hardware accelerators. For example, Intel Corp. 
has developed the MMX extensions for the 
Pentium processor and Integrated Device 
Technology has added basic DSP functionality 
to its R4000 line of RISC processors. In the 
embedded systems arena, many microcontroller 
and embedded processor manufacturers are also 
adding DSP functionality. 
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What is DSP processor performance? 
Engineers frequently cite performance as 

their overriding concern when choosing a pro, 
cessor for a new DSP system design. After all, 
their choice must meet the number-crunching 
demands of real-time applications like digital 
cellular and PC multimedia. Yet tight con- 
straints on the pricing of consumer products 
rule out paying for any unneeded performance. 

These conflicting requirements often lead 
designers to search for the lowest-cost DSP pro- 
cessor that performs well enough for the applica- 
tion. That means quantifying the computational 
needs of an application and identifylng DSP pro+ 
cessors that satisfy them-a truly challenging 
task. Berkeley Design Technolom, which special- 
izes in the analysis of DSP technology, has devel- 
oped a two-fold methodology of algorithm kernel 
benchmarking and application profiling. 

DSP processor performance can be measured 
in many ways. The most common metric is the 
time required to do a certain amount of process- 
ing. In some applications, however, concerns 
such as memory usage or power consumption 
may be equally-r even more-important. An 
ideal technique for measuring performance 
would yield data on execution time, memory 
usage, and power consumption. In what follows, 
execution time will serve as the primary measure 
of performance, with memory usage and power 
consumption as secondary considerations. 

Customary methods 
Traditional approaches to performance mea- 

surement use very simple metrics to describe pro- 
cessor performance. The most common perfor- 
mance unit, MIPS, is misleading because the 
amount of work done by an instruction can vary 
greatly from one processor to another. DSP proces- 
sors, in particular, often have highly specialized 
instruction sets. 

In other words, MIPS figures are useful only in 
the context of a single, known, processor architec- 
ture. Outside that context, there would have to be 
some gauge of instruction set efficiency-perhaps a 
ratio of the number of instructions the processor 
executes to the number of instructions other pro- 
cessors in the same class require to do the same 
work. MOPS suffers from a related problem-what 
counts as an operation and how many are needed 
to do useful work vary greatly from processor to 
processor. 

Other oft-quoted performance-measurement 
units can also mislead. Because multiply-accumu- 
late operations are central to many DSP algo- 
rithms, such as filtering, correlation, and vector 
multiplication, some manufacturers quote perfor- 
mance in multiply-accumulates per second 
(MACS). Most DSP processors, however, can 
complete one MAC per instruction cycle, making 
this unit equivalent to MIPS. Further, MAC mea- 

Functions used for Berkeley Design Technology benchmarks 

Function Description Application examples 

Real block finite impulse FIR filter that operates on a G.728 seeech encoding, 
response (FIR) filter 

Complex block FIR filter 

Real single-sample 
FIR filter 

Least-mean-square Least-mean-square adaptive FIR 
adaptive FIR filter 

block of real (not complex) data 

FIR filter that operates on a 
block of complex data 

FIR filter that operates on a 
single sample of real data 

filter that operates on a single 
sample of real data 

- 
other speech processing 

Modem channel equalization 

Speech processing, general 
filtering 

Channel equalization, servo 
control, linear predictive encoding 

mpulse response IIR filter that operates on 
single sample of real data (IIR) filter 

Vector dot product 

Vector add 

Vector maximum 

Convolutional encoder 

Sum of the pointwise 
multiplication of two vectors 

Pointwise addition of two 
vectors producing a third vector 

Discovery of the va ue 
and location of a vector’s 
maximum value 

Application of convolutional 

Convolution, correlation, matrix 
multiplication, multidimensional 
signal processing 

Graphics, combining audio 
signals or images, vector search 

Error-control coding, algorithms 
using block floating-point 
arithmetic 

North American digital 
forward error-correction code 
to a block of bits 

A contrived series of control 
operations (test, branch, push, 

p) and bit manipulations 

conversion of a normal 
time doman signal into the 

cellular telephone equipment 

ontrol operations appear in Finite-state machine 
nearly all digital signal-processing 

in-place fast Fourier 
transform (FFT) frequency domain 

compression, spectral analysis 

MPEG = Motion Pictures Experts Group 

surements disregard the important data move- 
ment and processing required before and after 
multiply- accumulate operations. 

Neither MIPS, MOPS, nor MACS can mea- 
sure secondary performance issues like memory 
usage and power consumption. This is a severe 
limitation because execution time means little if 
memory requirements exceed system design con- 
straints. Further, if large memory usage requires 
resorting to slower external memory, then the 
processor’s speed may be reduced. 

Likewise, in a portable application, a processor is 
unusable if it consumes more power than the avail- 
able battery can supply. Power consumption varies 
with different instructions and data values. 
Although many manufacturers quote a “typical” 
power consumption at a gwen clock rate, such 
specifications are suspect without details on the pre, 
cise instructions and data used in the measurement. 
Furthermore, the measurements do not account for 
special power-saving modes available when a pro- 
cessor (or a portion of it) is idle. 

A common approach to benchmarking com- 
puter systems is to use complete applications, or 
even suites of applications. This approach is used 
by the Standard Performance Evaluation Corp. in 
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the popular SPEC95 benchmarks for general-purpose processors 
and systems. Examples of DSP applications might include speech 
coders (CELI: VSELC GSM, and so on), modems (V34, V32bis, 
and so on), disk drive servo control programs, or PC-based multi- 
media systems. The approach works best in cases where the appli- 
cation software is portable-that is, when the application is coded 
in a high-level language like C. Unfortunately, because of the inef- 
ficiency of C compilers for the most cost-effective (fixed-point) 
DSP processors, and because of the demand for performance, 
high-volume DSP applications are largely coded in assembly Ian- 
guage. Furthermore, when applications written in C are bench- 
marked, the compiler as well as the processor is benchmarked. 

Suppose application benchmarks are coded in assembly. Even 
then, four problems remain. First, few applications are well 
enough defined to permit fair comparisons. For instance, two 
implementations of a standard modem may use different equaliz- 
ers, one more complex than the other, depending on whether the 
goal is a high-quality solution or one that makes the least 
demands on the processor. Second, with most complex applica- 
tions, it’s virtually impossible to ensure that assembly language 
software is optimal, or even near optimal; thus, application 
implementations may be benchmarking the programmer, not the 
processor. Third, full application benchmarks tend to measure a 
system’s performance, not just the processor’s. Without very 
careful system specifications, isolating the performance of the 
DSP processor from other system components like extemal 
memory and microcontroller coprocessors is very difficult. Last, 
coding an entire application could take years of engineering time. 

Algorithm kernel benchmarking 
The twofold methodology of algorithm kernel benchmarking 

and application profiling is a practical compromise between over- 
simplified MIPS-type metrics and overly complicated application- 
based benchmarks. Algorithm kernels are the mathematical 
building blocks of most signal-processing systems and include 
functions such as fast Fourier transforms, vector additions, and fil- 
ters. Algorithm kernels offer several compelling advantages as 
benchmarks: 
0 Relevance. Algorithm kernels can be selected by examining 
DSP applications and focusing on those portions that account for 
the largest share of the processing time. 

Ease of specification. By virtue of their modest size, algorithm 
kernels can be well-defined: a specification can state their input 
and output requirements, include test vectors to verify function- 
al conformance, and indicate which algorithms and optimiza- 
tions are allowable. For example, there are many techniques for 
implementing a fast Fourier transform (FFT) . Without specifying 
the exact type of implementation, one cannot fairly compare two 
processors’ FFT execution times. 

Optimization. Again because algorithm kernels are of a mod- 
erate size, a skilled programmer can write the code in assembly 
language and be fairly certain that his or her implementation is 
optimal, or very close to optimal, on a given processor. 
* Ease of implementation. Because of their moderate size, algo- 
rithm kernels can be implemented in a reasonable amount of 
time, even with thorough optimization. 

The general-purpose suite of algorithm kernels used in 
Berkeley Design Technology’s DSP processor benchmarking is 
called the BDT Benchmarks [Table 11. Although all of these 
benchmarks were chosen for their relevance to DSP applications, 
not all of them are traditional DSP functions. For example, the 
finite-state machine benchmark represents decision-making in 
control processing, and the convolutional encoder represents 
error-correction coding. As DSP applications become more com- 
plex and highly integrated, DSP processors are increasingly being 
called upon to execute these types of operations. 

With one exception, the benchmarks are optimized for execu- 

tion time. The exception is the finite-state machine, which is 
optimized for memory usage-usually of greater concern in con- 
trol functions. Naturally, these particular algorithm kernels may 
not be the best choice for every application. Engineers may want 
to add or delete algorithm kernels to better represent the type of 
processing performed in their applications. 

Measuring algorithm kernel execution 
There are several ways to measure a processor’s execution 

time on an algorithm kernel benchmark. Usually the most con- 
venient method is with a cycle-accurate software simulator. Such 
a simulator models a processor’s execution of instructions and 
keeps an accurate cycle count by making adjustments when fac- 
tors such as pipeline interlocking or bus contention slow its oper- 
ation. Software simulators offer a controlled, flexible, and inter- 
active environment for testing and optimizing code. Some 
include support for macros or scripts that can automate perfor- 
mance measurement and functionality verification so that engi- 
neers can quickly see how code changes affect performance. 

Hardware-based application development tools can also be used 
to measure execution time and are needed to gauge power con- 
sumption. An example is an emulator, which lets the user download 
code from a PC to the target processor. Using a debugger, most 
emulators allow the processor to step through the code line by line, 
or to run the code until a breakpoint is reached. 

To measure power consumption, code can be run in continu- 
ous loops on hardware application development tools. Power 
consumption is measured by isolating the power going to the 
DSP processor from the power going to other system compo- 
nents, running a benchmark in a repeating loop, and using a cur- 
rent probe to record the time-varying input current under care, 
fully controlled conditions. 

Measuring benchmark performance on new processors with- 
out software or hardware development tools is a tedious and 
error-prone process. The time required to execute each instruc- 
tion in the benchmark must be manually calculated and the 
benchmarks must be checked manually for functional correct- 
ness. Before this can be done, the processor documentation must 
be thoroughly understood, because pipeline interlocks or bus 
conflicts can slow execution. 

Benchmark results 
Figure 1 shows the execution time scores of several processors 

measured with the BDT FFT benchmark. The FFT is a compu- 
tationally efficient algorithm for computing the discrete Fourier 
transform, which converts time-domain signals into their fre- 
quency-domain representations. The results illustrate how archi- 
tectural features can impact a processor’s performance. 

The Texas Instruments TMS32OC80, for example, owes much of 
its top performance to an arithmetic and logic unit that permits two 
16-bit operations per instruction cycle. (Note that the TMS320C80 
includes four separate on-chip DSP processors that operate in par- 
allel; here, just one of the four processors is considered.) Similar11 
the Analog Devices ADSP-2106x and the Zoran ZR3800x both 
include special instructions to support the Fm improving their 
scores on t h  benchmark. 

Of course, caution is the watchword when interpreting bench- 
mark findings. For example, a processor’s data word width affects 
both numerical accuracy and memory usage, and cannot be ignored 
when viewing benchmark results. A 24-bit processor may execute a 
finite-impulse-response filter in the same time as a 16-bit processor, 
but the benchmark results will show a 50 percent increase in data 
memory usage. This increased memory use is a result of the extend- 
ed precision of the 24-bit data. In fact, since the 24-bit processor is 
calculating the filter result with 50 percent greater precision, more 
work has clearly been done. If the application needs high precision, 
the 24-bit processor may be an excellent choice. O n  the other hand, 
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if 16-bit precision is sufficient, 
then the 24-bit processor may be 
a poor candidate because it con- 
sumes more data memory. 

Application profiling 
The results of algorithm ker- 

nel benchmarks are useful but 
incomplete without an under- 
standing of how the kemels are 
used in actual applications. A 
useful methodology for relating 
algorithm kernels to actual 
applications is to measure or 
estimate how often subsections 
of application code are execut- 
ed-a technique called applica- 
tion profiling. Profiling can be 
done at varying levels of granu- 
larity, ranging from broad func- 
tional subsections to algorithm 
kernels and even individual 
instructions. At the algorithm 
kernel level, profiling looks at 
how often such kernels are exe- 
cuted when an application is run 
for a suitable period of time. 

There is more than one way 
to profile at the algorithm kernel 
level. Code in high-level lan- 
guages, such as C, is an excellent 
source of profiling information 
because algorithm kernels often 
can be identified as subroutines. 
If assembly code is available, 
profiling information may be 
extracted by running the code 
on an instruction-set simulator 
equipped with profiling capabili- 
ties, or by setting breakpoints in 
key sections of code to see how 
often each is executed. The 
same information may also be 
estimated by studying applica- 
tion specifications or block,level 
signal flow diagrams. 

Application profiling allows 
designers to estimate the rela- 
tive importance of each algo- 
rithm kemel benchmark in a 
particular application. Of 
course, it is not a perfect pro- 
cess. If the number of bench- 
marks is limited to a reasonable number, say 10 or 15, then in many 
cases there won’t be an exact match between every algorithm 
found in a complex application and a benchmark. Engineers will 
have to approximate some of the application’s processing with 
benchmarks that perform similar, but not identical, computations. 

Note, too, that application profiling may not identify some of 
the optimizations that will be possible when assembly code is writ- 
ten. For example, a programmer may notice that a set of values 
computed in one algorithm kemel is also used in a later kernel. 
Reuse of the values may markedly reduce the amount of process- 
ing required in the second algorithm kernel. 

A processor’s performance on an application is estimated by 
combining the results of the benchmarks with the results of the 
application profiling. Multiplying the benchmark execution times 

[1] Better pae$omnce on the 
Berkeley Design Technology fast 
Fourier transform benchmark is indi- 
cated by lower values of processor 
execution times. These results are 
based on the fastest version of each 
processor available in June 1995. For 
processors with on-chip cache, the ‘‘- 
C” indicates performance with the 
cache pre-loaded. 

[2] Processor execution time esti- 
mates for the 10-bund graphic 
equalizer application. A, B, C, and 
D represent four commercially avail- 
able DSPs. 

by the number of occurrences of each benchmark (or a similar 
algorithm kernel) yields an estimate of the time it would take to 
execute the application. 

A simple example of a 10-band graphic equalizer can be used to 
illustrate the approach described here. A stream of digitized audio 
samples enters the graphic equalizer at a known sampling rate. 
Occasionally, a control word telling the equalizer how much to 
attenuate each of the 10 frequency bands will also enter the sys- 
tem. Every time the equalizer receives a control word, it checks to 
see if any of the bandpass attenuation coefficients need to be 
changed. If they do, the equalizer updates the filter output gain 
parameters before proceeding with the filtering. 

The finite-state machine (FSM) benchmark can be used to rep- 
resent the decision-making control processing in this application; the 
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infinite impulse response (IIR) 
filter benchmark is a good 
match for the filter processing. 
Thus, an estimate of each pro- 
cessor's execution time on this 
application can be obtained by 
multiplying each processor's 
execution times on the FSM 
and IIR benchmarks by weight- 
ing factors reflecting the 
amount of each type of process- 
ing required, and then sum- 
ming these products for each 
processor. 

The results of such a calcu- 
lation are shown in Fig. 2 for 
four commercially available 
DSPs. Each processor's total 
execution time can then be 
compared with the execution 
time available (based on the 
sampling rate) to determine 
whether the processor has 
enough performance for the 
application. 

Other considerations 
Although performance is a 

leading consideration, many 
other factors affect the choice 
of a DSP processor. The im- 
portance of effective appli, 
cation development tools, 
for instance, should not be 
overlooked. Without such tools, writing application software 
can be difficult, no matter how strong the processor's perfor- 
mance. Likewise, chip vendor and third-party application engi- 
neering support can be invaluable when problems arise. Ad- 
ditionally, designers cannot ignore the matter of physical size and 
must be sure to choose a processor that is available in an appro- 
priate package. 

Cost is another critical concem. There are two ways to view the 
ratio of cost to performance. In some instances, additional perfor- 
mance beyond the minimum required will remain unused. In such 
cases, designers typically seek the least expensive processor with 
enough performance to do the job. At other times, the excess per, 
formance may allow extra features to be added to the product. Or, 
the designer may want a line of code-compatible DSP processors 
with performance levels appropriate for dlfferent members of an 
entire product line. In this situation, a cost-execution-time product 
metric-the execution time of a processor multiplied by the unit 
cost-may be useful. The cost-execution-time product of several 
processors on BDT's FFT benchmark is shown in Fig. 3. 

Designers must also remember that minimizing system cost may 
not always mean minimizing DSP processor cost. For example, one 
processor may use memory more efficiently than a slightly less 
expensive rival. If the lower memory usage can eliminate one 
memory chip from the system, the more expensive processor may 
yield the lowest overall system cost. Designers must also remember 
the cost of engmeering time and weigh the effect of the quality of 
application development tools on product development schedules. 

DSP systems will grow in sophistication and in their demand 
for computational performance. At the same time, semiconduc- 
tor vendors will press ahead with developing more powerful DSP 
processors and integrating them with other system components, 
like microcontrollers and general-purpose microprocessors. With 
more complicated systems and a widening choice of processors, 

[3] Better cost-perJonname on che fast Founer transform benchmark is indicated by lower values ofprocessor cost- 
time products Results here are based m the fastest werswn of each processor awailable in June 1995 and on qwmti- 
ty 1000 pnces For processors with on-chip cache, the "-C" indicates perjormunce with the cache pre-loaded 

designers will undoubtedly need better estimates of a processor': 
DSP performance. The methodology outlined above will be ar 
excellent starting place for calculating these estimates. 

To probe further 
"How RlSQ is DSP?" by Michael Smith (/E€€ Micro, Vol. 12, no. 6 

December 1992, p. 10) uses benchmark algorithms to compare 
reduce6instruction-set computer processors with DSP processors anc 
proposes an optimized architecture for digital signal processing. 

"Bringing Benchmarks up to SPEC" (BYTE, Vol. 21, no. 3, March 
1996, p. 145) discusses how the SPEC95 benchmarks are used tc 
evaluate general-purpose microprocessors and systems. 

"EDN's 1996 DSP-Chip Directory" by Marcus Levy and Anne Coyk 
(EDN, Vol. 41, no. 5, March 1, 1996, p. 40) is a concise overviev 
of commercial DSP processors. 

Buyer's Guide to DSP Processors, by Phil Lapsley, Jeff Bier, Ami 
Shoham, and Edward A. Lee is a 924-page technical report publishec 
annually by Berkeley Design Technology, Fremont, Calif. The repor 
discusses DSP benchmarking methodologies in detail and contain: 
extensive benchmarking data for popular DSP processors. Excerpt: 
from this report, as well as a pocket guide to DSP processors, arc 
available on the World Wide Web at http://www.bdti.com. 

DSP Processor Fundamentals: Architectures and Features (IEEI 
Press, 1996)  is an introductory textbook in which Phil Lapsley, Jef 
Bier, Amit Shoham, and Edward A. Lee discuss DSP process0 
architectures and features, and their relationship to performance 

Phil Lapsley is vice president of Berkeley Design Technology Inc. 
Fremont, Calif, and is one of the company's founders He has cc 
authored several industry reports on DSP technology. 

Garrick Blalock, a marketing engineer at the company, writes benchmarl 
code and contributes to BDT's published reports on DSP technoloa 
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